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1. Introduction

Starting already in the sixties, there exists an extensive literature on unitary irreducible rep-

resentations (UIR’s) of SO(2, N) and their use either for the conformal group of Minkowski

spaces or for the isometry group of AdSN+1. In recent times the interest in this subject

was renewed in particular by the AdS/CFT correspondence [1]. This paper is the third

in a series devoted to the study of UIR’s of SO(2, N) in relation to particle dynamics on

AdSN+1. Our results concern the explicit realization of UIR’s DN (α) of SO(2, N), for

generic N , either in terms of operators acting on holomorphic functions of N complex vari-

ables, obtained via geometric quantization [2], or N -dimensional oscillator variables [3].

Furthermore our study is singled out by being completely based on particle dynamics and

its treatment via Hamilton reduction. Within this framework the present paper is devoted

to the study of the peculiarities of massless scalar particles. In the field theoretical treat-

ment these peculiarities have been shown to be related to singleton representations [4 – 6].

The classical action for a particle in AdSN+1 contains its classical mass m and the

AdSN+1 radius R as parameters . For generic m 6= 0 the symmetry group is SO(2, N),

as the isometry group of the space-time. On the classical level the quadratic Casimir

C = 1
2JABJAB is equal to m2R2 and the lowest possible particle energy α in units of 1/R

is equal to mR. Quantization [2] deforms the classical relation C = α2 to Cq = αq(αq−N).

Cq/R
2 is interpreted as the squared mass of the quantum particle and the connection to

the classical mass is lost. 1

Therefore, up to this point the question which value of the Casimir (mass) in the

quantum case corresponds to the massless particle cannot be answered. The only possibility

to identify the Casimir (mass) of the massless particle is via its enhanced symmetry related

to conformal invariance. To do this, there are at least two possibilities. At first one can

take into account information from outside particle dynamics and identify the mass of the

1After this comment we will drop the index q for the quantum versions.
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quantum particle with the mass in the classical Klein-Gordon equation. There one has

Weyl invariance for C = −N2−1
4 , corresponding to α = N±1

2 . We will comment this option

later in the paper, but our main concern will be connected to a second possibility. As

announced, we stay completely within particle dynamics, start with the classical action of

a massless particle, note its invariance under the larger conformal group of AdSN+1, which

is SO(2, N + 1), and quantize this symmetry group.

Various subtleties we will meet in the following are related to the somewhat exotic

causal structure of AdSN+1. This space-time is not a global hyperbolic one. Null geodesics

reach the boundary in finite time. There are conjugate points, in particular all time-like

geodesics starting at one point meet again after a time interval π at the corresponding AdS

antipodal point, and related to this, only part of the causal future of a point can be reached

by time-like geodesics starting at this point [7, 4]. Although these issues play a role in field

theory, both for the massless as well as the massive case via the specification of certain

boundary conditions, there seems to be no particular problem for generic masses in particle

dynamics, the particle stays within the space-time for all times and the space of particle

trajectories is mapped one to one to the space of dynamical integrals [3]. However, the

situation becomes more involved for the massless particle, its classical trajectories go from

boundary to boundary within a time interval π and to a given set of isometric dynamical

integrals belong two trajectories. Special care is needed also for the global realization of

the conformal group itself.

2. The conformal group of AdSN+1

The (N + 1)-dimensional AdS space can be realized as the hyperboloid of radius R

X2
0 + X2

0′ −
N

∑

n=1

X2
n = R2 (2.1)

embedded in the (N + 2)-dimensional flat space R
2
N with coordinates XA, A = (0, 0′, 1,

. . . , N) and the metric tensor GAB = diag(+,+,−, . . . ,−). 2

As is well-known, the conformal group of the four-dimensional Minkowski space, due

to the fact that the special conformal transformations map certain whole light cones to

infinity, is globally not well defined within the original space. To cure this problem one

has to enlarge the discussion to an infinite-sheeted covering of the Minkowski space, which

can be conformally mapped to an Einstein static universe (ESU) [8]. It is straightforward

to adopt the techniques in this construction to our situation.

From general theorems on constant curvature spaces it is known that the conformal

group of AdSN+1 for N ≥ 2 is SO(2, N + 1), the same as for the Minkowski space of the

same dimension. The case N = 1 has infinite dimensional conformal symmetry and will

not be discussed here. What we need are explicit transformation formulas. To derive them

we start with the cone in R
2
N+1

Y 2
0 + Y 2

0′ − Y 2
1 − . . . − Y 2

N − Y 2
N+1 = 0 (2.2)

2More precise AdSN+1 is understood as the universal covering of the hyperboloid. If below we talk about

its isometry group, we have in mind the related universal covering of SO(2, N).
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without its vertex Y = 0. It is invariant under SO(2, N + 1) transformations

Y Â 7→ ΛÂ
B̂

Y B̂ , Â, B̂ = 0, 0′, 1, . . . N,N + 1 . (2.3)

We now relate the cone (2.2) to the AdS hyperboloid (2.1) via

XA = R
Y A

Y N+1
, Y N+1 > 0 , A = 0, 0′, 1, . . . N (2.4)

and get under a SO(2, N + 1) transformation

XA 7→
ΛA

B XB + R ΛA
N+1

ΛN+1
N+1 + R−1ΛN+1

B XB
. (2.5)

It is straightforward to check that these maps of the hyperboloid are indeed conformal

ones.

Since Λ ∈ SO(2, N + 1), one has 1 = (ΛN+1
N+1)

2 − ΛN+1
AΛN+1 A. Therefore, either

ΛN+1
A = 0, ∀A and ΛN+1

N+1 = ±1, or ΛN+1
A is a non-zero vector in the embedding

space of the hyperboloid. In the first case the transformation (2.5) is an isometry of

the AdS hyperboloid and globally well defined. In all other cases the transformation is

singular where the denominator vanishes. This means that isometries are the only globally

well defined conformal transformations.

We now map the cone (2.2) to an ESU R× SN , defined by θ ∈ R, (~Z,ZN+1) ∈ R
N+1,

~Z2 + (ZN+1)2 = 1 via

tan θ =
Y 0′

Y0
, ~Z =

~Y
√

Y 2
0 + Y 2

0′

, ZN+1 =
Y N+1

√

Y 2
0 + Y 2

0′

. (2.6)

Due to (2.4) this induces the standard injective map of AdSN+1 to the ESU

tan θ =
X0′

X0
, ~Z =

~X
√

X2
0 + X2

0′

, ZN+1 =
R

√

X2
0 + X2

0′

. (2.7)

Since in the last formula 0 < ZN+1 ≤ 1, the image of AdSN+1 is just a half of the ESU. The

other half of ESU then can be considered as a copy of the original AdSN+1. The conformal

boundary of AdSN+1 is mapped to R times the (N − 1)-dimensional equator at ZN+1 = 0

of the N -dimensional ESU sphere. If one introduces on the cone (2.2) equivalence classes

Y Â ∼ µY Â, µ > 0 the ESU is mapped one to one to these equivalence classes. Since the

action of SO(2, N + 1) commutes with this equivalence relation, it is globally well defined

on the ESU.

A last comment concerns the differences to the Minkowski case [8]. There its conformal

boundary is fixed by Y 0′ + Y N+1 = 0. Due to this an infinite number of conformal copies

of Minkowski space find its place on the ESU. Furthermore, there at least some of the

SO(2, N + 1) transformations, mixing Y N+1 with other coordinates, keep the boundary

invariant. They are combinations of isometries and dilatations.
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3. Classical theory

A part of the classical description for massless and massive particle dynamics is similar.

Therefore, we briefly repeat the scheme of [2] for m = 0 and discuss the items specific for

the massless case in more detail.

The massless particle dynamics on the hyperboloid (2.1) is described by the action

S = −
∫

dτ

[

ẊAẊA

2e
+

µ

2

(

XAXA − R2
)

]

, (3.1)

where e and µ are Lagrange multipliers and τ is an evolution parameter. The role of

the time coordinate on the hyperboloid (2.1) is played by the polar angle θ on the plane

(X0,X0′): X0 = r cos θ, X0′ = r sin θ. To have the kinetic term of the space coordinates

ẊnẊn with a positive coefficient we assume e > 0, and to fix the time direction we choose

θ̇ > 0, which is equivalent to X0Ẋ0′ − X0′Ẋ0 > 0.

The action (3.1) is gauge invariant and by the Dirac procedure we find three constraints

XAXA − R2 = 0 , PAPA = 0 , PA XA = 0 . (3.2)

The constraint PAPA = 0 is of the first class, whereas the two others are of the second

class. Therefore, the dimension of the reduced phase space is 2N like in the massive case.

We will describe this space in terms of dynamical integrals.

The spacetime isometry group SO(2, N) provides the conserved quantities

JAB = PA XB − PB XA , (3.3)

where PA are the canonical momenta PA = −ẊA/e. Since θ is the time coordinate, J00′ is

associated with the particle energy E and due to our assumptions it is positive

E = P0X0′ − P0′X0 = e−1(X0Ẋ0′ − X0′Ẋ0) > 0 . (3.4)

The boosts we denote by J0n = Kn, J0′n = Ln and we also use their complex combinations

zn = Ln − iKn , z∗n = Ln + iKn , n = 1, . . . , N . (3.5)

For further calculations it is convenient to introduce the following SO(N) scalars

J2 =
1

2
Jkk′Jkk′ , λ2 = z∗kzk , ρ2 =

√
z∗2 z2 , e2iβ =

z2

ρ2
, (3.6)

where z2 = zkzk, z∗2 = z∗kz∗k and we assume 0 ≤ β < π.

Due to the constraints (3.2) the SO(2, N) quadratic Casimir number vanishes, C =
1
2 JABJAB = 0, and this condition can be written as

E2 + J2 = λ2 . (3.7)

A set of other quadratic relations JAB JA′B′ = JAA′ JBB′ − JAB′ JBA′ follows from (3.3)

as identities in the variables (P,X). Taking A = 0, B = 0′, A′ = m, B′ = n (m 6= n) and

using (3.5) we obtain

2iE Jmn = z∗mzn − z∗nzm . (3.8)
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Its square yields 4E2J2 = λ4 − ρ4 and together with (3.7) we find the following relations

between the scalar variables

E2 =
1

2

(

λ2 + ρ2
)

, J2 =
1

2

(

λ2 − ρ2
)

. (3.9)

Eqs. (3.6), (3.8), (3.9) define E and Jmn as functions of (zn, z∗n) and, therefore, (zn, z∗n)

or (Kn, Ln) are global coordinates on the space of dynamical integrals of the isometry group.

These integrals allow to represent the particle trajectories geometrically without solving

the dynamical equations. From (3.3) we find N equations as identities in the variables

(P,X)

E Xn = Kn X0′ − Ln X0 . (3.10)

Since E, Kn, Ln are constants, Eq. (3.10) defines a 2-dimensional plane in the embedding

space R
2
N . The intersection of this plane with the hyperbola (2.1) is a particle trajectory.

The plane defined by (3.10) goes through the origin of R
2
N and the way how it intersects the

hyperboloid depends on the relations between the dynamical integrals Kn, Ln and E. To

describe the character of trajectories (3.10) we parameterize them by the time coordinate

θ

X0 = r(θ) cos θ , X0′ = r(θ) sin θ , Xn =
r(θ)

E
(Kn sin θ − Ln cos θ) ,(3.11)

with r(θ) =
ER

ρ | sin(θ − β)| . (3.12)

The function r(θ) here is obtained from the relation XnXn = r2−R2 and Eqs. (3.6), (3.9).

The singularities of r(θ) correspond to the AdS boundary and therefore for ρ = 0 the

massless particle is always at the boundary. From the isometric point of view this would

force us to remove ρ = 0 out of the phase space. However, for implementing conformal

invariance one anyway has to switch to the ESU whose one half is conformally mapped to

the AdS. Then ρ = 0 has to be kept within the phase space. The corresponding trajectories

are completely inside the equator of the ESU.

If ρ 6= 0, the singularity of (3.12) at θ − β = kπ indicates that the massless particle

always reaches the AdS boundary and, for a fixed (Kn, Ln), there are two different null-

geodesics given in the time intervals θ ∈ (β, π + β)|mod 2π and θ ∈ (π + β, 2π + β)|mod 2π,

respectively. The pieces of both trajectories, which are disconnected with respect to AdS,

represent the “visible” parts of two smooth trajectories in the full ESU. These are just two

with luminal velocity driven great circles on the ESU sphere, which intersect each other on

the equator.

To complete the description of the reduced phase space and its relation to the AdS null-

geodesics we introduce additional dynamical integrals related to the conformal symmetry.

The action (3.1) is invariant under the conformal transformations, since the conformal

factor of the kinetic term can be compensated by the transformations of the Lagrange

multiplier e. Considering infinitesimal transformations (2.5) different from isometries, we

find the Killing vectors (the down index labels them)

KB
A = R δB

A − R−1 XA XB . (3.13)
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The corresponding conserved quantities are CA = KB
A PB = RPA −R−1(PX)XA and on

the constraint surface (3.2) they become

CA = RPA . (3.14)

The conservation of canonical momenta PA in the massless case can also be checked directly

from the dynamical equations ẊA = −ePA, ṖA = µXA. Multiplying the first equation

by PA, the second by XA and using the constraints (3.2), we find µ = 0, which provides

ṖA = 0. Due to the conservation of PA, the null-geodesics are straight lines in R
2
N .

Making use of (3.11) and (3.12) we represent the trajectories as XA = CA T + QA, where

T = ER ρ−2 cot(θ − β) is a parameter along the lines, and

Q0 = ∓ ER

ρ
sin β , Q0′ = ± ER

ρ
cos β , Qn = ± R

ρ
(Kn cos β − Ln sin β) .(3.15)

The two signs above correspond to two lines given for the same set of isometry generators.

Since the number of functionally independent dynamical integrals has to be 2N , we

investigate relations between JAB and CA. From (3.3) and (3.14) we find

E Cn = Kn C0′ − Ln C0 (n = 1, ..., N) , (3.16)

as identities in the variables (P,X), like in (3.10). Two other relations

Kk Lk + C0 C0′ = 0 and Kk Kk − Lk Lk + C2
0 − C2

0′ = 0 (3.17)

also follow from (3.3) and (3.14), but on the mass-shell (3.2) only. Eqs. (3.8), (3.9), (3.16)

define all generators of the conformal symmetry as functions of Kn, Ln, C0, C0′ and these

2N + 2 dynamical integrals are constrained by (3.17). Introducing the complex variable

w = C0′ − iC0, the two equations of (3.17) can be combined in a one complex relation

z2 + w2 = 0 . (3.18)

Because of E > 0, the vector zn is nonzero and, therefore, the space of dynamical integrals

defined by (3.18) is a regular 2N -dimensional manifold. This manifold is identified with

the reduced phase space, which is the physical phase space Γph of the system. The isometry

generators (Kn , Ln) are only local coordinates on Γph and by (3.18) we have

w = ∓i
√

z2 = ∓iρeiβ . (3.19)

Eq. (3.4) yields E = e−1r2(θ)θ̇ and we can express the Lagrange multiplier e through the

dynamical variables. Then, calculating w = Re−1(Ẋ0′ − iẊ0) on the trajectories (3.11)–

(3.12) for the two different intervals θ ∈ (β, π+β) and θ ∈ (π+β, 2π+β), we find w = −iρeiβ

and w = iρeiβ , respectively. Thus, the above mentioned two trajectories correspond to the

two possible values of w in (3.19).

As far as the velocities of the massless particle are constrained by ẊAẊA = 0, the

set of null-geodesics is (2N − 1)-dimensional and, unlike to the massive case, there is no

one to one correspondence between the trajectories and the space of dynamical integrals.

– 6 –
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Nevertheless, the set of all trajectories reflects the structure of Γph. They are invariant

under re-scalings of all dynamical integrals JAB 7→ eγ JAB . Hence the set of trajectories

can be identified with Γph/R+.

Now we describe the Poisson bracket structure of Γph. The so(2, N) Poisson bracket

algebra of the isometry generators (3.3) is obviously preserved after the reduction to Γph.

It can be written in the form

{z∗m, zn} = 2Jmn − 2iδmn E , {zm, zn} = 0 = {z∗m, z∗n} , (3.20)

{Jlm, zn} = zl δmn − zm δln , {E, zn} = −izn , {E, Jmn} = 0 , (3.21)

and the Jmn’s form a so(N) subalgebra. Since the conformal generators CA do not commute

with the second class constraints of (3.2), their Poisson brackets are deformed after the

Hamiltonian reduction to Γph. To calculate such reduced brackets we use that

{z∗m, z2} =
2

iE

(

ρ2 zm + z2 z∗m
)

, (3.22)

which follow from (3.20) due to (3.9). Then, writing (3.16) in the form 2iECn = z∗nw−znw∗,

from (3.18) and (3.22) we find

{z∗n, w} = 2Cn , {w, w∗} = 2iE . {zn, w} = 0 . (3.23)

These equations define the Poisson brackets between other conformal generators and the

result can be written in the form

{JAA′ , CB} = GAB CA′ − GA′B CA , {CA, CB} = −JAB . (3.24)

The Poisson brackets (3.24) extend the so(2, N) algebra (3.20)–(3.21) up to so(2, N+1),

which describes the underlying conformal symmetry. Adding one column and one row to

the antisymmetric matrix JAB by the scheme

J
ÂB̂

=

(

JAB CA

−CA 0

)

, Â, B̂ = (0, 0′, 1, ..., N + 1) (3.25)

we get (N + 3) × (N + 3) antisymmetric J
ÂB̂

and the Poisson brackets of its components

correspond to the so(2, N + 1) algebra in the standard covariant form.

We specify the compact and non-compact generators for the SO(2, N + 1) symmetry

by E, Jm̂n̂ and zn̂, z∗n̂ (m̂, n̂ = 1, ..., N +1), respectively. So, we use the same notations as

for SO(2, N), only the indices run from 1 to N + 1. To distinguish the SO(N + 1) scalars

we use the sign ‘hat’

Ĵ2 =
1

2
J

k̂k̂′
J

k̂k̂′
, λ̂2 = z∗

k̂
z
k̂

, ẑ2 = z
k̂
z
k̂

, ẑ∗
2

= z∗
k̂
z∗
k̂
. (3.26)

Due to the mass-shell condition PAPA = 0 and the relation CA = RPA, the Casimir

number for J
ÂB̂

is also zero. In terms of SO(N + 1) scalars this condition reads

E2 + Ĵ2 − λ̂2 = 0 . (3.27)
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Eq. (3.16) provides that the quadratic relations (3.8) are fulfilled for the components Jn N+1

as well. As a result

2iE Jm̂n̂ = z∗m̂zn̂ − z∗n̂zm̂ (3.28)

is valid for all indices m̂ and n̂. Finally, the condition (3.18) becomes

ẑ2 = 0 . (3.29)

Thus, the physical phase space of the massless particle Γph is identified with the

space of SO(2, N + 1) generators E, Jm̂n̂, zn̂ z∗n̂, which satisfy the Eqs. (3.27)–(3.29) with

E > 0 and non-zero vector zn̂. Note that, due to (3.22) and the trivial Poisson brackets

{zm, z2} = 0, {Jmn, z2} = 0, {E, z2} = −2iz2, the condition z2 = 0 is SO(2, N) invariant

and, therefore, the manifold ẑ2 = 0 is SO(2, N + 1) invariant.

4. Quantum theory

A consistent quantum theory of the massless particle should provide a realization of the

SO(2, N +1) symmetry based of the classical picture. The Poisson bracket relations of the

so(2, N + 1) algebra (3.24) are essentially non-linear in terms of the independent variables

and their direct representation seems more complicated than in the massive case, since one

has to realize a higher symmetry on a non-trivial phase space of the same dimensionality.

We realize the SO(2, N + 1) symmetry by representations DN+1(α) [3], which are

based on the creation-annihilation operators (a∗m̂, am̂) of a (N + 1)-dimensional oscillator.

The generators of SO(N + 1) rotations in DN+1(α) have the standard quadratic form

Jm̂n̂ = i(a∗n̂am̂ − a∗m̂an̂) , (4.1)

and the operator Ĵ2 in terms of the creation-annihilation operators, respectively, is

Ĵ2 =
1

2
Jm̂n̂Jm̂n̂ = Ĥ2 + (N − 1)Ĥ − â∗ 2â2 . (4.2)

Here Ĥ = a∗n̂an̂ is the normal ordered (N + 1)-dimensional oscillator Hamiltonian, â2 =

an̂an̂ and â∗ 2 = a∗n̂a∗n̂.

The energy operator E is given as a shifted oscillator Hamiltonian

E = Ĥ + α , (4.3)

and α coincides with its minimal eigenvalue. The compact subalgebra so(2) × so(N + 1),

thus, is realized automatically.

The operators zn̂ and z∗n̂ are represented by

zn̂ =
1

√

2Ĥ + 4α − N + 1 + 2F̂

(

(2Ĥ + 2α + F̂ ) an̂ − a∗n̂ â2
)

, (4.4)

z∗n̂ =
(

a∗n̂(2Ĥ + 2α + F̂ ) − â∗ 2 an̂

) 1
√

2Ĥ + 4α − N + 1 + 2F̂
, (4.5)

– 8 –
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where F̂ is the following real function of scalar operators

F̂ =

√

â∗ 2â2 + 2(2α − N + 1)(Ĥ + α) . (4.6)

By (4.2) F̂ can be written as a function of Ĥ and Ĵ2 and it corresponds to FN+1 of [3].

The operator expressions with square roots in (4.4)–(4.6) depend on commuting opera-

tors and there is no ordering problem inside such expressions. They are naturally defined

on a basis of mutual eigenstates of Ĥ, Ĵ2 and Cartan generators of the SO(N + 1) ro-

tations as multiplication operators. The form of the boost operators (4.4) guarantees the

correct commutation relations between the compact and noncompact generators. The com-

mutators of the operators (4.4) can be calculated by the exchange relations between the

creation-annihilation and scalar operators and these calculations complete the commuta-

tion relations of the so(2, N + 1) algebra.

The representations DN+1(α) are unitary and irreducible if α is above the unitarity

bound α > N−1
2 . The analysis of irreducibility of DN+1(α) uses the relation between the

scalar operator ẑ2 and â2 [3]

ẑ2 = F̂ â2 . (4.7)

On the basis of this relation we introduce the quantum analog of (3.29) by

â2 |ψ〉ph = 0 . (4.8)

The Hilbert subspace Hph defined by this condition can be SO(2, N + 1) invariant only if

α is just at this bound α = N−1
2 , where the representation is still unitary, but becomes

reducible. At the unitarity bound the operator (4.6) reduces to
√

â∗ 2â2 and it vanishes on

the solutions of (4.8). Then, the operators (4.4) and (4.5) on Hph become

zn̂ |ψ〉ph =

√

2Ĥ + N − 1 an̂ |ψ〉ph , (4.9)

z∗n̂ |ψ〉ph =

(

a∗n̂

√

2Ĥ + N − 1 − â∗ 2 an̂
1

√

2Ĥ + N − 1

)

|ψ〉ph . (4.10)

The invariance of Hph with respect to the subset of infinitesimal transformations generated

by E and Jm̂n̂ is apparent. For the boosts zn̂, z∗n̂ one has to use the commutation relations

[â2, Ĥ] = 2â2, [â2, â∗ 2] = 4Ĥ + 2N + 2. Then, for example, from (4.10) we obtain

â2 z∗n̂ |ψ〉ph = a∗n̂

√

2Ĥ + N + 3 â2 |ψ〉ph = 0 , (4.11)

and altogether find that Hph is SO(2, N + 1) invariant indeed.

The adjoint form of (4.7) is ẑ∗ 2 = â∗ 2 F̂ and, therefore, ẑ∗ 2 vanishes on Hph

z∗n̂ z∗n̂ |ψ〉ph = 0 . (4.12)

The obtained representations of the conformal symmetry we denote by CN and now

we investigate its structure in more detail. First note that according to (4.10) the vacuum

is not invariant under the action of the operators z∗n̂ and the physical states are obtained
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by multiple actions of z∗n̂’s on the vacuum state |ψ〉ph = (z∗1) n1 (z∗2) n2 ...(z∗N+1)
nN+1 |0〉. To

analyze the embedding of the isometry subgroup SO(2, N) in CN we calculate the operator

for the Casimir number of SO(2, N). From (4.1), (4.3), (4.9), (4.10) and (4.12) we obtain
(

E2 +
1

2
JmnJmn − 1

2
(z∗n zn + zn z∗n)

)

|ψ〉ph =
1 − N2

4
|ψ〉ph , (4.13)

where the index summation goes from 1 to N . Eq. (4.13) indicates that CN contains the

UIR’s of SO(2, N) corresponding to the Weyl invariant mass value only. Acting on the

vacuum state by the operators z∗n (n = 1, ..., N) we create a SO(2, N) invariant subspace

H− ⊂ Hph. Since the Casimir number and the lowest value of E of this representation are

fixed by 1−N2

4 and N−1
2 , respectively, we get the representation which is unitary equivalent

to DN (N−1
2 ). Similarly, acting by the operators z∗n (n = 1, ..., N) on the state z∗N+1 |0〉, we

generate another subspace H+ for a new UIR of SO(2, N), which is unitary equivalent to

DN (N+1
2 ), since now the lowest eigenvalue of E is N+1

2 .

The direct sum H− ⊕H+ is SO(2, N + 1) invariant and we even have

Hph = H− ⊕H+ . (4.14)

To see first the SO(2, N +1) invariance of H−⊕H+ , it is enough to consider the action of

the operator z∗N+1 only. This operator naturally maps H− to H+ , since it commutes with

all z∗n. Due to (4.12) z∗N+1z
∗
N+1|ψ〉ph = −z∗nz∗n|ψ〉ph, which implies that z∗N+1 also maps H+

to H−. To prove that H− ⊕ H+ covers all Hph, we introduce nonphysical states obtained

by multiple actions of the operator â∗ 2 on the physical states from H− ⊕ H+. The first

two levels of the (N +1)-dimensional oscillator Fock space contain only the physical states

|0〉 and z∗n̂ |0〉. The total number of states on the level k is given by Ak
N+1 = (N+1)···(N+k)

k! .

These numbers obey

Ak
N+1 =

(

Ak
N + Ak−1

N

)

+ Ak−2
N+1 . (4.15)

(

Ak
N + Ak−1

N

)

here corresponds to the number of physical states on the level k from H−⊕
H+ and the rest Ak−2

N+1 states are obtained by the action of â∗ 2 on all states of the level

(k − 2). These nonphysical states are obviously orthogonal to the physical states. Thus,

the physical and nonphysical states constructed in these way cover the full Fock space.

5. Conclusions

We investigated the dynamics of scalar massless particles on AdSN+1 using the conformal

symmetry generated by the so(2, N +1) algebra. To have invariance under a globally well-

defined conformal group, AdSN+1 has to be mapped to half of an ESU R×SN and extended

to the full ESU. Then, what concerns conformal invariant dynamics, all trajectories are

either completely within the boundary of AdSN+1, an equator of the SN , or have a smooth

continuation into the other half of the ESU.

Hamiltonian reduction leads to a 2N dimensional physical phase space Γph, which is

a SO(2, N + 1) orbit in the space of generators of the conformal symmetry and the set of

trajectories on the ESU is mapped one to one to Γph/R+.
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The conformal group SO(2, N + 1) can also be considered as the isometry group of

AdSN+2, i.e. one dimension higher. Then Γph given by the constraint (3.29) describes

the kinematical domain corresponding to particle trajectories on the boundary of AdSN+2.

This boundary is conformally equivalent to an ESU R×SN , i.e. the conformal completion

of the original AdSN+1.

Quantizing the SO(2, N +1) symmetry we introduced the quantum analog of the con-

straint (3.29) by (4.8). Working now with UIR’s DN+1(α) of SO(2, N +1), to guarantee the

invariance of the constraint, one first has to choose α such that the representation becomes

reducible and second to constrain oneselves to the irreducible component defined by the

constraint. This fixes the lowest possible energy of the conformally invariant particle to the

unitarity bound of SO(2, N + 1), i.e. α = N−1
2 . Analyzing the transformation properties

with respect to the isometry subgroup SO(2, N) of the conformal group SO(2, N + 1), we

found (indicating by ∼ the restriction to AdSN+1 isometries)

[

DN+1

(

α =
N − 1

2

)]

constrained

∼ DN

(

α =
N − 1

2

)

⊕ DN

(

α =
N + 1

2

)

. (5.1)

This relation is well-known from field theoretical considerations [5] or general representation

theory [11]. The l.h.s. of (5.1) is equal to a singleton (Rac) [4 – 6] and the localization of

singletons on the boundary has appeared in field theoretical terms at various places, see

e.g. [12].

What we claim to be a new result of this paper is the derivation completely in terms of

particle dynamics. On a more detailed level we should add: particle dynamics formulated

via Hamiltonian reduction in terms of (N + 1)-dimensional oscillator variables.

Concerning the isometry group of our original AdSN+1 the representations on the

r.h.s. of (5.1) have no special properties in comparison to their relatives at generic values

of α > N−2
2 . As mentioned in the introduction, their relevance for the massless quantum

particle could have been borrowed from field theory. But then we still would not understand

their necessary combination in the form of a direct sum nor the particles transformation

properties under the larger conformal group.

There is a very interesting physical interpretation of (5.1): In the generic case DN (α)

describes a massive (isometric) particle which lives inside AdSN+1, its trajectories never

reach the AdS-boundary. DN (N±1
2 ) still share the property that the particle lives in one

half of the related ESU. Its classical trajectories are now null geodesics reaching the bound-

ary and being continued by reflection. On the other side, the massless (conformal) particle

has to live in the whole ESU. Therefore, it is just the quantum mechanical superposition

of the isometric particle with α = N±1
2 living in one or the other half of the ESU.

A last comment concerns related issues in field theory [9]. There, to handle the prob-

lems posed by the lack of global hyperbolicity, for the Weyl invariant situation three possible

quantization schemes related to transparent and reflective Neumann or Dirichlet bound-

ary conditions have been considered. Obviously our conformal particle corresponds to

the transparent case, while the both reflective versions are related to the use of a single

DN (N±1
2 ). That the reflective versions violate conformal invariance can also be seen di-

rectly from the propagators. They are singular at light cones centered at AdS antipodal
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points [9, 10], but being antipodal is not preserved under general SO(2, N + 1) transfor-

mations (2.5). However, note that this objection applies only if one insists on connecting

the notion of masslessness also in field theory with invariance under a globally well-defined

conformal group.
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